
н. ... Jaceurs
the presence of great glacial moraines extending from the base of the mountains far into the valley below.

To the south the boundary of the bain is patily form in series of eruptive volcanic cones, known as the Mono Craters, from t, and from $5,360 \mathrm{ft}$. to which the tunnel derives its name. Some twenty in number, therir ppeared to be the most fir volcanic peaks, attaining an clevation of 9000 ft . or more, extend The percentage of core: in a north and south direction for about 10 miles. Most of them bir lower depthe was so: are of very recent origin, being formed subsequently to the glacia! hetent geologists to classify flows that cover the ancient floor of the valley. For the most part, ions at or near tumel gra they are composed of acidic lava, ranging from fairly compact his report recommending t obsidian, a black volcanic glass, to hight grey pumice. For a dis- ireat difficulties were to b tance of approximately $10,000 \mathrm{ft}$., the tumnel penetrates these vol canic cones.

The mesa separating the basin and the Oweas Piver along the the: of the tunnel for about 8 miles has an elevation of approximately $8,000 \mathrm{ft}$.

The mesa occupies part of what was once a deep valley lying between the Sierra on the west and the White and Inyo Momntains to the cast, each range rising to an elevation of $13,000 \mathrm{ft}$. or more. Portions of the floor of this ancient valley were covered with lakes which, at :: later period, were filled with products of erosion from the steep slopes: of the surrounding mountains.

During the quaternary period great glaciers, of which remnants ar still to be found, existed in the High Sierra forming the west and southwest boundary of the Basin. In time, these ice and snow fieldwith their included debris built great moraines at the base of the mountains and far out onto the valley floor. At a later period, the region was visited by great volcanic activity resulting in the form:tion of high volcanic peaks, of which the Mono Craters are a part and the covering of the surrounding terrain for miles with lava and volcanic ash.
The Mono Craters Tunnel from portal to portal is driven through such formations.

Beginning of the Project

Preliminary surveys for the project were started in 1930. Sineral possible routes were studied. Borings by diamond and calys drills were made on two other routes besides on the one adopted.

For the most part, the surface of the plateau separating the 1 wo watersheds is covered with volcanic ash of variable depth so th:t
elieved none would be fon
Preliminary construction.
mos, the building of water mas started in July, 1934.
heptember and at East Po West Portal, at an elevat ast from the town of Leev fouth $55 \frac{2}{3}$ degrees east for 1 $13 \frac{1}{3}$ degrees east for 16,987 otal length of $59,812 \mathrm{ft}$.
The tunnel has a gradie ection with a diameter of 9 f In a coefficient of $n=0.01$. cc.-ft. Excavation was cor and 4, driven from Shafts The concrete lining is 96 pr e lined October 24, 1939. With the completion of $: 1$ truction, connecting the E Reservoir outlet tumnel wit' expected that the water: nnual flow of 51 sec.-ft., itself, will be delivered into As shown in the accompa rom six headings; first fro ast Portal, respectively; if ind from Headings 2 and ompartments, two for hoist itility compartment $5 \times 6 \frac{1}{2} \mathrm{f}$
[J. A. W. W. A.
from the base of
ally formed by a mo Craters, from in number, these - or more, extend \therefore Most of them ntly to the glacial 'or the most part, n fairly compact imice. For a disaetrates these vol-
fiver along the line of approximately
alley lying between matains to the east, more. Portions of h lakes which, at a on the steep slopes
which remnants are ming the west and 'ice and snow fields at the base of the t a later period, the ulting in the forma, Craters are a part miles with lava and
:al is driven through

Aed in 1930. Sevamond and calyx The one adopted. , arating the two * * depth so that

YOL. 32, NO. 1] MONO CRATERS TUNNEL CONSTRUCTION
rery few outcrops of the underlying rock formations are visible, making geologic determinations from surface indications practically impossible. Eight drill holes varying in depth from 386 to $1,003.5$ ft . and from $5,360 \mathrm{ft}$. to $10,130 \mathrm{ft}$. apart were bored along what appeared to be the most favorable line for the tunnel.
The percentage of cores obtained from several of the holes at their lower depths was so small that it was difficult for even competent geologists to classify properly the true character of the formations at or near tumnel grade. One of the consulting geologists in his report recommending the location adopted, stated that, while great difficulties were to be anticipated in driving the tumnel, he believed none would be found to be insurmountable. He was right.
Preliminary construction, comprising roads, telephone and power lines, the building of water supply and the establishment of camps, was started in July, 1934. Excavation was started at West Portal in September anid at East Portal in November, 1934.
West Portal, at an elevation of 7.058 ft ., is situated 7.8 miles southcast from the town of Leevining. From this point, the tunnel runs south $55 \frac{2}{3}$ degrees east for $42,825 \mathrm{ft}$. to an angle point; thence south $43 \frac{1}{3}$ degrees east for $16,987 \mathrm{ft}$. to East Portal on the Owens River-a total length of $59,812 \mathrm{ft}$.
The tunnel has a gradient of 0005 , is almost circular in crossscetion with a diameter of $9 \mathrm{ft} .7 \frac{1}{2}$ in. inside the concrete lining. Based on a coefficient of $n=0.012$, it will have a carrying capacity of 365 sec.-ft. Excavation was completed April 26 this year when Headings 3 and 4 , driven from Shafts 1 and 2, respectively, met on that date. The concrete lining is 96 per cent completed, $2,708 \mathrm{ft}$. remaining to be lined October 24, 1939.
With the completion of the three miles of conduit, now under construction, connecting the East Portal of the 3,450-foot Grant Lake Reservoir outlet tunnel with West Portal, Mono Craters Tunnel, it is expected that the waters of Rush Creek amounting to a mean anmual flow of 51 sec.-ft., plus some 30 sec. -ft . made in the tunnel itself, will be delivered into Owens River early next year.
As shown in the accompanying profile, excavation was carried on from six headings; first from Headings 1 and 6 , West Portal and East Portal, respectively; then from Headings 4 and 5 from Shaft 2 and from Headings 2 and 3 from Shaft 1. Each shaft has three compartments, two for hoisting, 5 ft . by 5 ft .2 in ., and a manway and uility compartment $5 \times 6 \frac{1}{2} \mathrm{ft}$.

VOL. 32, NO. 1] MONO CRATERS TUNNEL CONSTRUCTION

Shaft Sinking Problems

Shaft 2, 12,735 ft. from East Portal, i 299 ft deep from collar to iumel invert and 361 ft . to bottom to allow for skip loading below muck pocket. This shaft presented no difficulties in sinking, which was started on February 9, 1935 and completed to tunnel grade four months later.

Formations encountered from the surface were: benching for the collar was in hard rhyolite tuff; from the collar 7 ft . of loosely cemented volcanic ash, 207 ft . of streambed clayey gravel, 113 ft . of basalt; and from 28 ft . below tunnel invert to bottom of shaft, a fainly well cemented glacial gravel.

The shaft being located on the rib of a small spur jutting out from high cliffs surrounding a small green meadow fed by springs, indicated considerable water might be encountered. Consequently, a 16 -inch well was drilled about 10 ft . from one side of the shaft at the time sinking was started. After penetrating about 20 ft . into the hard basalt, with no increase of water, the hole was bottomed at 234 ft . from the collar. A deep well pump kept the shaft thoroughly dewatered as sinking progressed. The well made approximately 150 gal. per min. which undoubtedly materially facilitated sinking.

The hard basalt was excellent formation in which to excavate a spacious muck pocket and a large pump sump on each side of the shaft, also for the enlargement of the tunnel section for a battery charging station and the construction of a repair drift opposite the shaft. The shaft is lined with concrete for 40 ft . from the collar down. The shafts are constructed 20 ft . from the center line of the tunnel.

Driving was begun in Heading 4 August 28, and in Heading 5 September 7, 1935.

The construction of Shaft 1, 24,460 ft. from West Portal and 22,614 ft. from Shaft 2 , presented a different problem. Sinking was started December 3, 1934, and tunnel grade, 896 ft. from collar, was reached May 12, 1937. The bottom is 48 ft . deeper to take care of the muck. From the collar, the formations are as follows: 18 ft . loose volcanic ash; 507 ft . fairly hard rhyolite tuff; 38 ft . volcanic ash; 308 ft . of glacial gravels; 73 ft . sandstone (old rock floor).

Sinking through the upper 525 ft . was made in good time. Water was encountered at a depth of 492 ft ., or 33 ft . above the bottom of the hard rhyolite. When the softer formation, the ash, was encountered, trouble began and continued on down to tunnel grade.

A few feet of sinking below the water table brought water in large quantities, 200 gal. per min. or more at the start. A chamber was cut in the hard rock 480 ft . from the collar for the installation of pumps for boosting the water to the surface. The volcanic ash, in all degrees of fineness, was hard to hold as it would seep through thr lagging or spiling or boil up from the floor, causing much cavitating back of the timbers. Below the ash the glacial gravels and other fragmental materials were even more troublesome.

Glacial gravels, as found at the base of the Sierra in the form of moraines, are a heterogencous mass of debris ranging from boulders many cubic yards in volume down to exceedingly fine rock meal. In its initial state the whole mass is fairly well cemented and generally impervious to water. This is exemplified in the numerous lakes found on the eastern slope of the Sierra formed by terminal moraine: across canyons and water courses. Grant Lake on Rush Creek is an example; and the new Grant Lake Dam-site has its abutments in a terminal moraine through which the stream had ultimately cut through.

In the periodic advance and recession of the ice field, the moraines were subjected to periods of erosion and sedimentation in which the materials were segregated and classified, resulting in beds of open coarse gravel, coarse sands, fine sands and silts.

While large boulders, of such size as to require blasting, were often encountered in the shaft, the greatest trouble was found in the fine sands and silts which, due to the water pressures behind or under them, as they were approached, would cause them to boil up and fill the shaft for many feet. At several places, as aquifers, or water bearing strata were encountered, small drifts were constructed leading from or around the shaft to intercept and control the water.

When construction of this shaft was started, some consideration was given to the desirability of sinking a well or drill hole as had been done at Shaft 2 and of installing a deep well pump to facilitate drainage. Calyx drill hole No. $4,6,155 \mathrm{ft}$. to the west, and drill hole No. $5,3,388 \mathrm{ft}$. to the east on the tunnel line, indicated the water table to be at an approximate elevation of $7,449 \mathrm{ft}$. at the shaft, or 492 ft . below the collar. That assumption proved to be correct. It was considered an unnecessary expense to drill such a well when sinking for half the depth or more would be in dry ground. Later experience draws the conclusion that the well would have been most desirable and economical.

Ultimately a 12 -inch well, drilled to tunnel grade from the then
frotion of the shef! seozown smbing opration it intererpted water face sands and claye wator pressure as th from the collar dow :heve bot tom of the wint, the shaft is 1 -hape, better to wif Aher concreting, tl cunsiderable presint for drainage.

At a place 709 it iniercepted which. supply with no m - inking, the averag pr min. and at tim

The formation er was mostly rhyolite oncesionally only lis small spurs of grar tilled with glacial g (icological profile.)

Water was encou wats detected in sm and gas increased ! prortal the gas had farilities were no lo driving at the face. known as Shaft 3, compartment shaft

At the shaft coll pacity of over 50 mait had an auxili mas of a power on . dvance at the fac it.. the neck of on ronsiderable trout: hadly broken indic.

B. A. W. W. A.

. .an water in large if chamber was installation of solcanic ash, in \& x y through the \& much cavitating sewls and other
\qquad arm in the form of . .s. irom boulders at bine rock meal. ond and generally numerous lakes wiminal moraines \therefore Rush Creek is : sts abutments in man ultimately cut
this the moraines
-stion in which
ctitg in beds of \%:
aing, were often
\therefore and in the fine
as stind or under
st boil up and
"rmers, or water
anted leading
., viter.
swe ronsideration
us hole as had
Why to facilitate
s.s.t, and drill
\Rightarrow milicated the
$\therefore 16 \mathrm{ft}$. at the
matared to be
\cdots at trill such a

- : lry ground.
x mhave been
\cdots \%n the then
vol. 32, NO. 1] MONO CRATERS TUNNEL CONSTRUCTION
bottom of the shaft 131 ft . above tumnel grade, helped tremendously in sinking operations. While no pumping was done from the well, it intercepted water bearing strata alternating with less pervious finc sands and clayey deposits, relieving the latter from uplift from water pressure as they were approached. The shaft is concrete lined from the collar down for 40 ft . From to to 520 ft ., or to a level 5 ft . above bottom of the section in hard rock, it is gunited. Below that point, the shaft is lined with reinforced concrete, and octagonal in shape, better to withstand the heavy ground and water pressures. Atter concreting, the walls were backed with cement grout under considerable pressure. Holes were drilled later through the walls for drainage.

At a place 709 ft . from the collar, 250 gal . per min. of water was intercepted which, for a year or more, was used for camp domestic supply with no material decrease in volume. During period of sinking, the average flow in the shaft was approximately 550 gal . per min. and at times considerably higher.

Driving the Headings

The formation encountered in advancing Heading 1 for $17,300 \mathrm{ft}$. was mostly rhyolite which, as a whole, was fairly hard and required occasionally only light support. For the first mile from West Portal, small spurs of granite were penetrated with intervening valleys refilled with glacial gravels; volcanic ash and detrital materials. (See Geological profile.)

Water was encountered at $6,100 \mathrm{ft}$. At $7,800 \mathrm{ft}$. carbon dioxide gas was detected in small quantities. As progress advanced, both water and gas increased materially. In May, 1936, at 13,000 ft. from the portal the gas had increased to such a volume that the ventifating facilities were no longer adequate, and it became necessary to suspend driving at the face. At $11,000 \mathrm{ft}$. from the portal a ventilation shaft, known as Shaft 3, was constructed by sinking and raising. A twocompartment shaf, 535 ft. deep, it was completed in 38 days.

At the shaft collar were installed several blowers with a total capacity of over 50,000 cu.ft. per min. Electrically operated, each unit had an auxiliary gas engine attached to operate the blower in case of a power outage, assuring adequate ventilation at all times. Advance at the face was resumed in July. At approximately 14,400 ft. the neck of one of the main craters was crossed which caused roniderable trouble. For several hundred feet, the formation was h:stly broken indicating a major fissure or fault, probably one through

TOTAL LENGTH 11.3 MILES

Sundack
whin the craters erupted. Large quantities of water and some warm aring (up to $97^{\circ} \mathrm{F}$.) highly charged with carbon dioxide, were inicreepted. At one place, high water pressure back of the face unisd a run-in, filling the tunnel for a hundred feet.

On reaching $15,230 \mathrm{ft}$., some large crevices were intercepted which urrased the water flow by several thousand gallons per minute, conporarily flooding the tumnel. Work in the face was suspended in construct additional pumping installations, one at Shaft 3 and n:' at Station 15,000 , each of 9,000 gal. per min. capacity.

On rcsuming work in the face, grouting off the water and gas wis resorted to. The procedure consisted of drilling deep holes in the face, from four to eight in number up to 40 ft . in depth, then to immp cement grout in them to refusal at 1,000 to $1,100 \mathrm{lb}$. per sq.in. mrsure. By using quick setting cement to finish the grouting of , ath hole, drilling and blasting at the face followed immediately stor finishing grouting.

Ifter grouting, the face was advanced 20 ft . and again followed the thilling of the 40 -foot holes. If water and gas in troublesome manities were not encountered, the face was advanced another - 11 (11., otherwise the face was again grouted. This procedure assured : lanst a 20 -foot grouted wall ahead of the face at all times, demaing the risk of run-ins on approaching soft or broken ground.
To reduce further the dangers of cave-ins on approaching soft sums, the water pressures were relieved by drilling holes in the walls mil roof back of the face. Pipes placed in the drains would convey - he water and gas back to pumps, thereby reducing the amount of sater on the tunnel floor and keeping the air more free of carbon lavide gas.

It $17,300 \mathrm{ft}$., Heading 1 passed through a transition zone of agzinmerates consisting of debris from volcanic rocks and underlying :hainl deposits, and entered into the ancient rock floor, old meta\cdots : \quad phics consisting of quartzites, sandstones, shales and slates. inf the most part, these old sedimentaries are thinly bedded, have $\because \cdots$ subjected to great disturbances resulting in much distortion, trming and weathering. The bedding planes are usually found suming at a steep angle between the vertical and 60 or 70 degrees, nomonly toward the north. The strike is generally in an east and : d diretion. Their yertical attitude permits free percolation of and from the overlying alluvial and glacial gravels and other $\therefore \cdot$ wious materials. For about $3,000 \mathrm{ft}$. after entering the sedi\because :ntries, the sandstone is calcareous and carbonates were generally

as.

-ying through sruption must stones. alcareous forI the action of ve volcanoes. om the portal de was found reaching the ;inning of this naximum apof the carbon or being freed asiderably on urring during ase of carbon
of the condiecked and the

It was en$v 2.5$ and the toxic nor int of the air,
large flows of and in such 20 per cent, a.ft. per min. os the miners :s of whether pressure was
y heavy, resh point with 1 throughout orphics come ter, changing

Fol. 32, NO. 1] MONO CRATERS TUNNEL CONSTRUCTION
53
from hard to soft or vice versa within a few feet. The tunnel is iriven for $3 \frac{1}{2}$ miles through this formation. The area has been troken up by numerous faults running more or less in a northerly direction. Fissures filled with loose sand, silts, and clays were frepantly encountered, which, generally accompanied with watef,wre very difficult to penetrate. The bulk of this area was heavily Filed and much of the distance was advanced behind breast boards.

Control of Water

Shortly before holing through Headings 1 and 2, Heading 1 was making $9,300 \mathrm{gal}$. per min. of water, about half being pumped to Wext Portal, the remainder up Shaft 3 .

Due to the flat gradient and small width of tunnel, the water had to be picked up at close intervals. Pick-up pumps were quite uniformly spaced $1,000 \mathrm{ft}$. apart as were transformer stations. At :haces where carbon dioxide entered in a large volume it was necessary to place the pumps at much closer intervals to prevent the escape of gras from the water into the air. Carbon dioxide is especially corrosive to steel. Pick-up pumps pumping carbonated water were made of bronze and had bronze rotating elements. Any other material did not last long.
Main pumping stations, each of 9,000 to $10,000 \mathrm{gal}$. per min. mapacity were installed at $7,800 \mathrm{ft}$., $11,000 \mathrm{ft} ., 13,500 \mathrm{ft}$. and 15,000 if. from the portal, each generally made up of two units. Dewatering hues were two or three 14 -inch * 12 gage steel pipe flanged in 24 -foot sections well anchored to the wall or floor.

Metnod of Support

At start of construction, timber sets made up of 8 by 8 -inch timber were used for a few hundred feet at each portal heading; later steel sets of 5 -inch $12 \frac{1}{4}$-pound I-beam and 6 -inch $12 \frac{1}{2}$-pound I-beams were used in lighter ground. For the last $25,000 \mathrm{ft}$. of tunnel driven, ior the most part in heavy ground, 6 -inch H -beams of 20 - and 30 proud weight per foot were used throughout. In the heaviest around, where 30 -pound beams were used, a steel spreader was also mployed made up of 6 -inch 20 -pound H -beams curved to a radius dif 19 ft .4 in. The sets are normally placed on 5 -foot centers, though many places they are much closer and in numerous cases only a ww inches apart. While in ground requiring but normal timbering,
the sets are generally lagged with 2×6 in. or 3×6 in. lumber, or crown bars of 4×6 in. or $6 x 6$ in. timber, in heavy ground, spiling made up of 4×6 in. or $6 \times 6 \mathrm{in}$. timbers had to be driven well beyond the position: of the following set to prevent runs in soft material. In wet ground containing boulders and inclined to run, steel spiling made up of 6×2 in. 10.5 -pound steel channels was used advantageously. Spiling was generally driven by the mucking machine acting as a battering ram, a long timber with reinforced ends being placed between the mucker and the spiling driven.

In driving Heading 2, westerly from Shaft 1 , the contact between the old rock floor and the overlying gravels was followed for a con-

Fig. 3. Cross Sections, Mono Craters Tunnel
siderable distance, going in and out of the sandstone and into the gravels. At every change considerable additional water was encountered, which with the highly weathered condition of the sandstone made for a tendency to run unless extreme care was taken in advancing the face.

Heading 3 was driven about $7,800 \mathrm{ft}$. easterly from Shaft 1 wholly through the metamorphics-quartzites alternating with thinly bedded sandy shales predominating. Through this section numerous intrusions of granitic rocks (diorites, porphyries and related rocks) were encountered.

Each contact was accompanied by much faulting and weathering with the feldspathic minerals in the rocks in many instances highly

OL. 32, NO. 1] MONO CRAT
aolinized, causing the grour and raising of the floor. The be diorites, was often ver: yowder to break the rock. I ing slow, often requiring see
In driving Heading 4, wh iormations were penetrated. in good hard basalt for a fe agglomerates for a short di: mostly sands and silts wore wet and heavy. Andesitic as good sound andesite for abo without support, large flows grouting.

Beyond the andesite drivi glacial gravels, followed by metamorphics. Both the gl ous faults and made large heavy and required heary several runs occurred in ar occurring about 300 ft . ba of driving operations for : the tunnel in heavy groun mile was lined with concre

Heading 5, driven easte nated in basalts and uneor an ancient stream bed abo in, partially filling the tu and shaft, the latter to w pended for about a mont

Formations in Heading basalts, and unconsolidat consisting of beds of vole: sands and gravels. Som have a tendency to sque Very heavy timbering w The tunnel is supporter length. Of the distance per cent or $7,480 \mathrm{ft}$. was
The maximum water $\{$ gal. per min. or 44 sec. -1

[J. A. W. W. A.

4.) lumber, or crown ast. spiling made up n bevond the position ancil In wet ground * sining made up of smoreously. Spiling - xering as a battering \% binced between the

The contact between sollowed for a con-

sTEEL SET
Misc Tunnel

* Hunstone and into the asitisnal water was enWersdition of the sandwerte care was taken in
*exty from Shaft 1 wholly
 *is section numerous \because rw and related rocks)
"asting and weathering :unny instances highly
vOL. 32, NO. 1] MONO CRATERS TUNNEL CONSTRUCTION
kaolinized, causing the ground to squeeze from the sides and arch and raising of the floor. The core of some of the intrusives, especialiy the diorites, was often very hard, sometimes requiring 60 per cent powder to break the rock. It also broke very blocky making mucking slow, often requiring secondary shooting.

In driving Heading 4, westerly from Shaft 2, various kinds of furmations were penetrated. Starting at the shaft, excavation was in good hard basalt for a few hundred feet, then through volcanic agglomerates for a short distance when unconsolidated sediments, mostly sands and silts were encountered, some of these were very. wet and heavy. Andesitic agglomerates followed the sediments, then good sound andesite for about $2,000 \mathrm{ft}$. While the latter stood well without suppori, large flows of water were encountered necessitating grouting.

Beyond the andesite driving was through several thousand feet of glacial gravels, followed by about $6,000 \mathrm{ft}$. of granite and then the motamorphics. Both the gravels and granite were crossed by numerous faults and made large quantities of water. The ground was heavy and required heavy support. In spite of utmost care taken, several runs occurred in advancing through the gravels; one such, occuring about 300 ft . back from the face, caused the suspension of driving operations for several months. During this period, all the tunnel in heavy ground from the run to the shaft for about a mile was lined with concrete for greater safety.

Heading 5, driven easterly from Shaft 2, like Heading 4, alternated in basalts and unconsolidated sands and gravels. In crossing an ancient stream bed about $1,500 \mathrm{ft}$. from the shaft, the roof caved in, partially filling the tunnel with debris and flooding the tunnel and shaft, the latter to within 80 ft . of the collar. Work was suspended for about a month.

Formations in Heading 6 also alternated between volcanics, mostly basalts, and unconsolidated ancient lacustrine deposits, the latter consisting of beds of volcanic ash, near the portal, then beds of silts, sands and gravels. Some of the silts, partially consolidated, would have a tendency to squeeze and heaving of the floor would occur. Very heavy timbering was required here.

The tunnel is supported for $40,322 \mathrm{ft}$. or for 67.4 per cent of its total length. Of the distance timbered, 23.2 per cent was spiled, and 18.5 per cent or $7,480 \mathrm{ft}$. was advanced behind breast boards.

The maximum water flow for all headings was a little over 20,000 gal. per min or $44 \mathrm{sec}-\mathrm{ft}$.

At the present time, the trmol is making about $14,000 \mathrm{gmi}$ water per min. and Heading 1 is making between 450 and 500 ms of carbon dioxide gas.

Where heavy ground was encountered, the excavation was nitarg, materially increasing the thickness of the concrete lining. J.es amounts of water still coming in the tumnel at the time the lis. was being poured gave considerable trouble. Drains were phs... in the floor, and, where possible, seepage from the sides and as was lead to them by sheathing with light sheet iron, or handed.: pipe drains through the arch forms. The sides and arch were pons after the invert. Both were placed with a pneumatic gun chares directly from the mixer in the tunnel.

The details of equipment and methods of operation have t. been covered in this paper. Those interested may find a n. written article descriptive of the tunnel in all its phases in the Deer ber, 1938, issue of the Western Construction Neus, witten by Wav: W. Wyckoff, member of the A. W. W. A., and engineer of the projer:

Safety Measures

In spite of large quantities of water and gas, and in the face : heavy, treacherous ground, the safety record on the project lo, been very good. During the last two and a half years, during whis time over $25,000 \mathrm{ft}$. of tumnel has been driven and $40,000 \mathrm{ft}$. lim: not a fatality has occurred.

When carbon dioxide gas was first detected, a mine rescue on: was trained, organized and equipped and has been functioning er: since when emergencies arise.

Special safety equipment and appliances have been installed: strategic points in Heading 1 to take care of any emergency arisi. due to exposure to gas.

At Shaft 1 heavy reinforced concrete bulkheads with steel dous were constructed on each side of the shaft to protect it from floodi: in case a heavy run of water or a power outage should occur. Adw quate standby pumping and ventilating equipment was installes at all headings and shafts.

The project is being constructed by force account under the dirt tion of H. A. Van Norman, Chief Engineer and General Manag: Bureau of Water Works and Supply, Department of Water as Power, with W. W. Hurlbut as Assistant Chief.

TWh. Wat Yox, si! :rativl. Th * he 1920\% siseten disi swold and :ant serve. s,mat fowns sa+! at preat
\therefore lhese dis armmes hav way. To it ?. 51910 our a. 1920 our sibur distriet fatrid reven whi per co momues wip mate to this war. At the sother ares sal

As a gener: strurban are ofporation i the struets in \& the town, sat crects hy mid thus at

A paper pres 4t lima, N. Y Whehester \& L;

